6,375 research outputs found

    Kinetic Theory and Hydrodynamics of Dense, Reacting Fluids far from Equilibrium

    Full text link
    The kinetic theory for a fluid of hard spheres which undergo endothermic and/or exothermic reactions with mass transfer is developed. The exact balance equations for concentration, density, velocity and temperature are derived. The Enskog approximation is discussed and used as the basis for the derivation, via the Chapman-Enskog procedure, of the Navier-Stokes-reaction equations under various assumptions about the speed of the chemical reactions. It is shown that the phenomenological description consisting of a reaction-diffusion equation with a convective coupling to the Navier-Stokes equations is of limited applicability.Comment: Submitted to Journal of Chemical Physic

    Response of bubbles to diagnotic ultrasound:a unifying theoretical approach

    Get PDF
    The scattering of ultrasound from bubbles of ∼1 μ\sim 1~\mum radius, such as used in contrast enhancers for ultrasound diagnostics, is studied. We show that sound scattering and ``active'' emission of sound from oscillating bubbles are not contradictory, but are just two different aspects derived from the same physics. Treating the bubble as a nonlinear oscillator, we arrive at general formulas for scattering and absorption cross-sections. We show that several well-known formulas are recovered in the linear limit of this ansatz. In the case of strongly nonlinear oscillations, however, the cross-sections can be larger than those for linear response by several orders of magnitude. The major part of the incident sound energy is then converted into emitted sound, unlike what happens in the linear case, where the absorption cross-sections exceed the scattering cross-sections

    Logarithmic temperature profiles in the ultimate regime of thermal convection

    Get PDF
    We report on the theory of logarithmic temperature profiles in very strongly developed thermal convection in the geometry of a Rayleigh-Benard cell with aspect ratio one and discuss the degree of agreement with the recently measured profiles in the ultimate state of very large Rayleigh number flow. The parameters of the log-profile are calculated and compared with the measure ones. Their physical interpretation as well as their dependence on the radial position are discussed.Comment: 14 pages, no figur

    Response maxima in modulated turbulence

    Get PDF
    Isotropic and homogeneous turbulence driven by an energy input modulated in time is studied within a variable range mean-field theory. The response of the system, observed in the second order moment of the large-scale velocity difference D(L,t)=>~Re(t)^2$, is calculated for varying modulation frequencies w and weak modulation amplitudes. For low frequencies the system follows the modulation of the driving with almost constant amplitude, whereas for higher driving frequencies the amplitude of the response decreases on average 1/w. In addition, at certain frequencies the amplitude of the response either almost vanishes or is strongly enhanced. These frequencies are connected with the frequency scale of the energy cascade and multiples thereof.Comment: 11 pages, 6 figure

    Velocity profiles in strongly turbulent Taylor-Couette flow

    Get PDF
    We derive the velocity profiles in strongly turbulent Taylor-Couette flow for the general case of independently rotating cylinders. The theory is based on the Navier-Stokes equations in the appropriate (cylinder) geometry. In particular, we derive the axial and the angular velocity profiles as functions of distance from the cylinder walls and find that both follow a logarithmic profile, with downwards-bending curvature corrections, which are more pronounced for the angular velocity profile as compared to the axial velocity profile, and which strongly increase with decreasing ratio η\eta between inner and outer cylinder radius. In contrast, the azimuthal velocity does not follow a log-law. We then compare the angular and azimuthal velocity profiles with the recently measured profiles in the ultimate state of (very) large Taylor numbers. Though the {\em qualitative} trends are the same -- down-bending for large wall distances and (properly shifted and non-dimensionalized) angular velocity profile ω+(r)\omega^+(r) being closer to a log-law than (properly shifted and non-dimensionalized) azimuthal velocity profile uφ+(r)u^+_{\varphi}(r) -- {\em quantitative} deviations are found for large wall distances. We attribute these differences to the Taylor rolls and the height dependence of the profiles, neither of which are considered in the theoretical approach

    Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Benard convection in glycerol

    Get PDF
    We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number (Ra) up to 10810^8 (for fixed temperature difference between the top and bottom plates) and as functions of "non-Oberbeck-Boussinesqness'' or "NOBness'' (Δ\Delta) up to 50 K (for fixed Ra). For this large NOBness the center temperature TcT_c is more than 5 K larger than the arithmetic mean temperature TmT_m between top and bottom plate and only weakly depends on Ra. To physically account for the NOB deviations of the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the decomposition of NuNOB/NuOBNu_{NOB}/Nu_{OB} into the product of two effects, namely first the change in the sum of the top and bottom thermal BL thicknesses, and second the shift of the center temperature TcT_c as compared to TmT_m. While for water the origin of the NuNu deviation is totally dominated by the second effect (cf. Ahlers et al., J. Fluid Mech. 569, pp. 409 (2006)) for glycerol the first effect is dominating, in spite of the large increase of TcT_c as compared to TmT_m.Comment: 6 pages, 7 figure

    On the sound of snapping shrimp

    Get PDF
    Snapping shrimp produce a snapping sound by an extremely rapid closure of their snapper claw. Source levels reported for Alpheus heterochaelis are as high as 220 dB (peak-to-peak) re. 1 µPa at 1 m distance. The loud snap has been attributed to the mechanical contact made when the snapper claw contracts. The recent ultra-high-speed imaging of the snapper claw closure at 40500 frames per second has revealed that the sound is, in fact, generated by the collapse of a cavitation bubble formed in a fast flowing water jet forced out from between the claws during claw closure. A temporal analysis of the sound recordings and the high-speed images shows that no sound is associated with the claw closure, while a very prominent signal is observed during the collapse of the cavitation bubble. Gallery of Fluid Motion\ud Award-winning entry 200
    • …
    corecore